Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 114(1): 209-224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710629

RESUMEN

Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.


Asunto(s)
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Meiosis/genética , ARN Mensajero/genética , ARN no Traducido/genética
2.
Transgenic Res ; 31(1): 131-148, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34802109

RESUMEN

Camelina sativa (camelina) is emerging as an alternative oilseed crop due to its short growing cycle, low input requirements, adaptability to less favorable growing environments and a seed oil profile suitable for biofuel and industrial applications. Camelina meal and oil are also registered for use in animal and fish feeds; however, like meals derived from most cereals and oilseeds, it is deficient in certain essential amino acids, such as lysine. In higher plants, the reaction catalyzed by dihydrodipicolinate synthase (DHDPS) is the first committed step in the biosynthesis of lysine and is subject to regulation by lysine through feedback inhibition. Here, we report enhancement of lysine content in C. sativa seed via expression of a feedback inhibition-insensitive form of DHDPS from Corynebacterium glutamicums (CgDHDPS). Two genes encoding C. sativa DHDPS were identified and the endogenous enzyme is partially insensitive to lysine inhibition. Site-directed mutagenesis was used to examine the impact of alterations, alone and in combination, present in lysine-desensitized DHDPS isoforms from Arabidopsis thaliana DHDPS (W53R), Nicotiana tabacum (N80I) and Zea mays (E84K) on C. sativa DHDPS lysine sensitivity. When introduced alone, each of the alterations decreased sensitivity to lysine; however, enzyme specific activity was also affected. There was evidence of molecular or structural interplay between residues within the C. sativa DHDPS allosteric site as coupling of the W53R mutation with the N80V mutation decreased lysine sensitivity of the latter, but not to the level with the W53R mutation alone. Furthermore, the activity and lysine sensitivity of the triple mutant (W53R/N80V/E84T) was similar to the W53R mutation alone or the C. glutamicum DHDPS. The most active and most lysine-insensitive C. sativa DHDPS variant (W53R) was not inhibited by free lysine up to 1 mM, comparable to the C. glutamicums enzyme. Seed lysine content increased 13.6 -22.6% in CgDHDPS transgenic lines and 7.6-13.2% in the mCsDHDPS lines. The high lysine-accumulating lines from this work may be used to produce superior quality animal feed with improved essential amino acid profile.


Asunto(s)
Arabidopsis , Lisina , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli , Retroalimentación , Hidroliasas , Semillas/genética , Semillas/metabolismo
3.
BMC Plant Biol ; 19(1): 474, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694550

RESUMEN

BACKGROUND: CRISPR/Cas9 gene editing has become a revolutionary technique for crop improvement as it can facilitate fast and efficient genetic changes without the retention of transgene components in the final plant line. Lack of robust bioinformatics tools to facilitate the design of highly specific functional guide RNAs (gRNAs) and prediction of off-target sites in wheat is currently an obstacle to effective application of CRISPR technology to wheat improvement. DESCRIPTION: We have developed a web-based bioinformatics tool to design specific gRNAs for genome editing and transcriptional regulation of gene expression in wheat. A collaborative study between the Broad Institute and Microsoft Research used large-scale empirical evidence to devise algorithms (Doech et al., 2016, Nature Biotechnology 34, 184-191) for predicting the on-target activity and off-target potential of CRISPR/SpCas9 (Streptococcus pyogenes Cas9). We applied these prediction models to determine on-target specificity and potential off-target activity for individual gRNAs targeting specific loci in the wheat genome. The genome-wide gRNA mappings and the corresponding Doench scores predictive of the on-target and off-target activities were used to create a gRNA database which was used as a data source for the web application termed WheatCRISPR. CONCLUSION: The WheatCRISPR tool allows researchers to browse all possible gRNAs targeting a gene or sequence of interest and select effective gRNAs based on their predicted high on-target and low off-target activity scores, as well as other characteristics such as position within the targeted gene. It is publicly available at https://crispr.bioinfo.nrc.ca/WheatCrispr/ .


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Kinetoplastida , Triticum/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Marcación de Gen , Genoma de Planta , Internet
4.
BMC Plant Biol ; 19(1): 292, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31272394

RESUMEN

BACKGROUND: The oilseed Camelina sativa is grown for a range of applications, including for biofuel, biolubricants, and as a source of omega-3 fatty acids for the aquaculture feed industry. The seed meal co-product is used as a source of protein for animal feed; however, the low value of the meal hinders profitability and more widespread application of camelina. The nutritional quality of the seed meal is largely determined by the abundance of specific seed storage proteins and their amino acid composition. Manipulation of seed storage proteins has been shown to be an effective means for either adjustment of nutritional content of seeds or for enhancing accumulation of high-value recombinant proteins in seeds. RESULTS: CRISPR/Cas9 gene editing technology was used to generate deletions in the first exon of the three homoeologous genes encoding the seed storage protein CRUCIFERIN C (CsCRUC), creating an identical premature stop-codon in each and resulting in a CsCRUC knockout line. The mutant alleles were detected by applying a droplet digital PCR drop-off assay. The quantitative nature of this technique is particularly valuable when applied to polyploid species because it can accurately determine the number of mutated alleles in a gene family. Loss of CRUC protein did not alter total seed protein content; however, the abundance of other cruciferin isoforms and other seed storage proteins was altered. Consequently, seed amino acid content was significantly changed with an increase in the proportion of alanine, cysteine and proline, and decrease of isoleucine, tyrosine and valine. CsCRUC knockout seeds did not have changed total oil content, but the fatty acid profile was significantly altered with increased relative abundance of all saturated fatty acids. CONCLUSIONS: This study demonstrates the plasticity of the camelina seed proteome and establishes a CRUC-devoid line, providing a framework for modifying camelina seed protein composition. The results also illustrate a possible link between the composition of the seed proteome and fatty acid profile.


Asunto(s)
Brassicaceae/genética , Globulinas/genética , Proteínas de Plantas/genética , Proteínas de Almacenamiento de Semillas/genética , Secuencia de Bases , Brassicaceae/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Globulinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética
5.
BMC Plant Biol ; 19(1): 178, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046681

RESUMEN

Following publication of the original article [1], a reader spotted an incorrect citation of the reference 14 [2] in the 'Background'. The male meiocyte isolation work described in this article [2] was carried out in rice and not in Brassica as originally stated in the 'Background' [1]. Thus, the following amendment to the Background section should be noted.

6.
BMC Plant Biol ; 18(1): 293, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463507

RESUMEN

BACKGROUND: Molecular analysis of meiosis has been hindered by difficulties in isolating high purity subpopulations of sporogenous cells representing the succeeding stages of meiosis. Isolation of purified male meiocytes from defined meiotic stages is crucial in discovering meiosis specific genes and associated regulatory networks. RESULTS: We describe an optimized method termed MeioCapture for simultaneous isolation of uncontaminated male meiocytes from wheat (Triticum spp.), specifically from the pre-meiotic G2 and the five sub-stages of meiotic prophase I. The MeioCapture protocol builds on the traditional anther squash technique and the capillary collection method, and involves extrusion of intact sporogenous archesporial columns (SACs) containing meiocytes. This improved method exploits the natural meiotic synchrony between anthers of the same floret, the correlation between the length of anthers and meiotic stage, and the occurrence of meiocytes in intact SACs largely free of somatic cells. The main advantage of MeioCapture, compared to previous methods, is that it allows simultaneous collection of meiocytes from different sub-stages of prophase I at a very high level of purity, through correlation of stages with anther sizes. A detailed description is provided for all steps, including the collection of tissue, isolation and size sorting of anthers, extrusion of intact SACs, and staging of meiocytes. Precautions for individual steps throughout the procedure are also provided to facilitate efficient isolation of pure meiocytes. The proof-of-concept was successfully established in wheat, and a light microscopic atlas of meiosis, encompassing all stages from pre-meiosis to telophase II, was developed. CONCLUSION: The MeioCapture method provides an essential technique to study the molecular basis of chromosome pairing and exchange of genetic information in wheat, leading to strategies for manipulating meiotic recombination frequencies. The method also provides a foundation for similar studies in other crop species.


Asunto(s)
Separación Celular/métodos , Profase Meiótica I , Células Vegetales , Triticum/citología , Flores/citología , Flores/ultraestructura , Células Vegetales/ultraestructura
7.
Plant Cell ; 26(5): 2098-2113, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24876252

RESUMEN

The production of the sperm cells in angiosperms requires coordination of cell division and cell differentiation. In Arabidopsis thaliana, the germline-specific MYB protein DUO1 integrates these processes, but the regulatory hierarchy in which DUO1 functions is unknown. Here, we identify an essential role for two germline-specific DUO1 target genes, DAZ1 and DAZ2, which encode EAR motif-containing C2H2-type zinc finger proteins. We show that DAZ1/DAZ2 are required for germ cell division and for the proper accumulation of mitotic cyclins. Importantly, DAZ1/DAZ2 are sufficient to promote G2- to M-phase transition and germ cell division in the absence of DUO1. DAZ1/DAZ2 are also required for DUO1-dependent cell differentiation and are essential for gamete fusion at fertilization. We demonstrate that the two EAR motifs in DAZ1/DAZ2 mediate their function in the male germline and are required for transcriptional repression and for physical interaction with the corepressor TOPLESS. Our findings uncover an essential module in a regulatory hierarchy that drives mitotic transition in male germ cells and implicates gene repression pathways in sperm cell formation and fertility.

8.
Protein Expr Purif ; 95: 162-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24394588

RESUMEN

Seeds are capable of accumulating high levels of seed storage proteins (SSP), as well as heterologous proteins under certain conditions. Arabidopsis thaliana was used to develop a strategy to deplete seeds of an endogenous SSP and then replenish them with the same protein fused to a heterologous protein. In several other studies, competition with endogenous SSP for space and metabolic resources was shown to affect the accumulation of recombinant proteins in seeds. We used RNAi to reduce the expression of the five napin genes and deplete the seeds of this SSP. Targeting a recombinant protein to a vacuole or structure within the seed where it can be protected from cytosolic proteases can also promote its accumulation. To achieve this, a synthetic Brassica napus napin gene (Bn napin) was designed that was both impervious to the A. thaliana napin (At napin) RNAi construct and permitted fusion to a heterologous protein, in this case green fluorescent protein (GFP). GFP was placed in several strategic locations within Bn napin with consideration to maintaining structure, processing sites and possible vacuolar targeting signals. In transgenic A. thaliana plants, GFP was strongly localized to the seed protein storage vacuole in all Bn napin fusion configurations tested, but not when expressed alone. This SSP depletion-replenishment strategy outlined here would be applicable to expression of recombinant proteins in industrial crops that generally have large repertoires of endogenous SSP genes.


Asunto(s)
Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Brassica napus/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semillas/metabolismo , Albuminas 2S de Plantas/química , Secuencia de Aminoácidos , Brassica napus/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Ingeniería de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Semillas/química , Alineación de Secuencia
9.
Sci Rep ; 2: 874, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166857

RESUMEN

Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts.


Asunto(s)
Vectores Genéticos , Proteínas de Plantas , Plantas/genética , Virus del Mosaico del Tabaco/genética , Proteínas Fluorescentes Verdes/genética , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/virología , Proteínas Recombinantes/biosíntesis
10.
Epigenetics ; 6(2): 141-6, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20935498

RESUMEN

Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigenómica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/genética , Evolución Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Proteínas Represoras/genética , Factores de Transcripción/genética
11.
Plant Signal Behav ; 5(6): 691-4, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20505346

RESUMEN

The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif is a small yet distinct regulatory motif that is conserved in many plant transcriptional regulator (TR) proteins associated with diverse biological functions. We have previously established a list of high-confidence Arabidopsis EAR repressors, the EAR repressome, comprising 219 TRs belonging to 21 different TR families. This class of proteins and the sequence context of the EAR motif exhibited a high degree of conservation across evolutionarily diverse plant species. Our comprehensive genome-wide analysis enabled refining EAR motifs as comprising either LxLxL or DLNxxP. Comparing the representation of these sequence signatures in TRs to that of other repressor motifs we show that the EAR motif is the one most frequently represented, detected in 10 to 25% of the TRs from diverse plant species. The mechanisms involved in regulation of EAR motif function and the cellular fates of EAR repressors are currently not well understood. Our earlier analysis had implicated amino acid residues flanking the EAR motifs in regulation of their functionality. Here, we present additional evidence supporting possible regulation of EAR motif function by phosphorylation of integral or adjacent Ser and/or Thr residues. Additionally, we discuss potential novel roles of EAR motifs in plant-pathogen interaction and processes other than transcriptional repression.

12.
Plant Physiol ; 152(3): 1109-34, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20097792

RESUMEN

The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Etilenos/metabolismo , Genoma de Planta , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Familia de Multigenes , Fosforilación , Alineación de Secuencia , Análisis de Secuencia de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Plant Cell ; 21(1): 54-71, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19155348

RESUMEN

The seed maturation program is repressed during germination and seedling development so that embryonic genes are not expressed in vegetative organs. Here, we describe a regulator that represses the expression of embryonic seed maturation genes in vegetative tissues. ASIL1 (for Arabidopsis 6b-interacting protein 1-like 1) was isolated by its interaction with the Arabidopsis thaliana 2S3 promoter. ASIL1 possesses domains conserved in the plant-specific trihelix family of DNA binding proteins and belongs to a subfamily of 6b-interacting protein 1-like factors. The seedlings of asil1 mutants exhibited a global shift in gene expression to a profile resembling late embryogenesis. LEAFY COTYLEDON1 and 2 were markedly derepressed during early germination, as was a large subset of seed maturation genes, such as those encoding seed storage proteins and oleosins, in seedlings of asil1 mutants. Consistent with this, asil1 seedlings accumulated 2S albumin and oil with a fatty acid composition similar to that of seed-derived lipid. Moreover, ASIL1 specifically recognized a GT element that overlaps the G-box and is in close proximity to the RY repeats of the 2S promoters. We suggest that ASIL1 targets GT-box-containing embryonic genes by competing with the binding of transcriptional activators to this promoter region.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Represoras/metabolismo , Semillas/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonación Molecular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Germinación/genética , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Regiones Promotoras Genéticas , ARN de Planta/genética , Proteínas Represoras/genética , Alineación de Secuencia , Factores de Transcripción/genética
14.
BMC Biotechnol ; 8: 88, 2008 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19014699

RESUMEN

BACKGROUND: Employing genomic DNA clones to characterise gene attributes has several advantages over the use of cDNA clones, including the presence of native transcription and translation regulatory sequences as well as a representation of the complete repertoire of potential splice variants encoded by the gene. However, working with genomic DNA clones has traditionally been tedious due to their large size relative to cDNA clones and the presence, absence or position of particular restriction enzyme sites that may complicate conventional in vitro cloning procedures. RESULTS: To enable efficient cloning and manipulation of genomic DNA fragments for the purposes of gene expression and reporter-gene studies we have combined aspects of the Gateway system and a bacteriophage-based homologous recombination (i.e. recombineering) system. To apply the method for characterising plant genes we developed novel Gateway and plant transformation vectors that are of small size and incorporate selectable markers which enable efficient identification of recombinant clones. We demonstrate that the genomic coding region of a gene can be directly cloned into a Gateway Entry vector by recombineering enabling its subsequent transfer to Gateway Expression vectors. We also demonstrate how the coding and regulatory regions of a gene can be directly cloned into a plant transformation vector by recombineering. This construct was then rapidly converted into a novel Gateway Expression vector incorporating cognate 5' and 3' regulatory regions by using recombineering to replace the intervening coding region with the Gateway Destination cassette. Such expression vectors can be applied to characterise gene regulatory regions through development of reporter-gene fusions, using the Gateway Entry clones of GUS and GFP described here, or for ectopic expression of a coding region cloned into a Gateway Entry vector. We exemplify the utility of this approach with the Arabidopsis PAP85 gene and demonstrate that the expression profile of a PAP85::GUS transgene highly corresponds with native PAP85 expression. CONCLUSION: We describe a novel combination of the favourable attributes of the Gateway and recombineering systems to enable efficient cloning and manipulation of genomic DNA clones for more effective characterisation of gene function. Although the system and plasmid vectors described here were developed for applications in plants, the general approach is broadly applicable to gene characterisation studies in many biological systems.


Asunto(s)
Clonación Molecular/métodos , ADN/metabolismo , Ingeniería Genética/métodos , Genoma/genética , Recombinación Genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Genes de Plantas , Genes Reporteros , Vectores Genéticos/genética , Glucuronidasa/metabolismo , Mutagénesis Insercional , Sistemas de Lectura Abierta/genética , Regiones Promotoras Genéticas , Factores de Transcripción , Transformación Genética , Transgenes
15.
Plant Physiol Biochem ; 46(7): 647-654, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18515127

RESUMEN

Sinapoylcholine (sinapine) is the most abundant antinutritional phenolic compound in cruciferous seeds. The quaternary ammonium compounds, choline, betaine and N,N-dimethylglycine, reside along a biosynthetic pathway linked to the synthesis of membrane phospholipids and neurotransmitters with various biological functions. In chicken, choline intake is required for optimal egg-laying performance and a choline supplement in diet is positively correlated with weight gains. A key step in sinapine biosynthesis is catalyzed by sinapoylglucose: choline sinapoyltransferase (SCT; EC 2.3.1.91) to form an ester linkage with sinapoylglucose and choline. The objective of this work was to reduce the sinapine content and simultaneously enhance free choline levels in cruciferous seeds. We report here the characterization of an Arabidopsis T-DNA insertion mutant lacking SCT activity in the seed. The sct mutant seeds contain less than 1% of sinapine and a more than 2-fold increase in free choline compared with wild type. We further expressed a choline oxidase (COX; EC 1.1.3.17) gene from Arthrobacter pascens in the Arabidopsis sct mutant and wild-type background using a napin gene promoter to convert free choline into betaine, an effective stress-alleviating compound in plants. Betaine was not detected in WT or sct mutant seeds. The sct+COX seeds contain nearly 2-fold greater levels of betaine relative to WT+COX seeds, demonstrating a positive correlation between endogenous choline and betaine production. In contrast, stable comparable levels of free choline were detected between sct+COX and WT+COX plants suggesting choline homeostasis likely prevent high levels of betaine production in the seed of transgenic COX plants.


Asunto(s)
Arabidopsis/metabolismo , Betaína/metabolismo , Colina/análogos & derivados , Colina/metabolismo , Semillas/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Arabidopsis/genética , Arthrobacter/enzimología , Arthrobacter/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Northern Blotting , Mutagénesis Insercional , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/genética , Plantones/metabolismo , Semillas/genética
16.
Mol Plant Microbe Interact ; 17(7): 711-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15242165

RESUMEN

Resistance to Albugo candida isolate Acem1 is conferred by a dominant gene, RAC1, in accession Ksk-1 of Arabidopsis thaliana. This gene was isolated by positional cloning and is a member of the Drosophila toll and mammalian interleukin-1 receptor (TIR) nucleotide-binding site leucine-rich repeat (NB-LRR) class of plant resistance genes. Strong identity of the TIR and NB domains was observed between the predicted proteins encoded by the Ksk-1 allele and the allele from an Acem1-susceptible accession Columbia (Col) (99 and 98%, respectively). However, major differences between the two predicted proteins occur within the LRR domain and mainly are confined to the beta-strand/beta-turn structure of the LRR. Both proteins contain 14 imperfect repeats. RAC1-mediated resistance was analyzed further using mutations in defense regulation, including: pad4-1, eds1-1, and NahG, in the presence of the RAC1 allele from Ksk-1. White rust resistance was completely abolished by eds1-1 but was not affected by either pad4-1 or NahG.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Proteínas de Unión al ADN/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Hidrolasas de Éster Carboxílico/metabolismo , Cromosomas Artificiales de Levadura , Proteínas de Unión al ADN/metabolismo , Inmunidad Innata/genética , Datos de Secuencia Molecular , Oomicetos/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...